
CIS 422/522 Fall 2011! 1!

Career Mentorship Colloquium: Working at RDI

Brian Walch, Jason Mancuso
Resource Data, Inc.

Date: November 10, 2011
Time: 2:00 p.m.
Location: 260 Deschutes

Abstract

Brian Walch and Jason Mancuso from Resource Data, Inc. will talk about
working at RDI. RDI is an information technology company specializing in
GIS and custom software and system design and implementation. They will
also discuss current and future opportunities for employment with RDI.

CIS 422/522 Fall 2011! 2!

Achieving System Qualities Through  
Software Architecture !

The meaning of “design”!
The module structure!
Design principles!

CIS 422/522 Fall 2011! 3!

Product Development Cycle and
Architecture!

Business Goals
 Hardware
 Software
 Marketing
 other

Product Planning
 Economic Evaluation
 Development Strategy
 Marketing Strategy
 Prioritization

Requirements
 Capabilities
 Qualities
 Reusability

Architecture
 Tradeoffs of
 quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Design decisions,
tradeoffs and constraints Goal: Keep architectural

design decisions in
synch with developmental
goals

CIS 422/522 Fall 2011! 4!

SW Engineering of Software Architecture!

•  What are we trying to gain/maintain control of
in the Architectural Design phase?!
–  Profoundly effect system and business qualities!
–  Requires making tradeoffs!

•  Control implies achieving system qualities by
choice not chance!
–  Understanding what the tradeoffs are!
–  Understanding the consequences of each choice!
–  Making appropriate choices at appropriate times!

CIS 422/522 Fall 2011! 5!

Implications for the Development
Process!

Implies need to address architectural concerns in the
development process:!

•  Understanding the “business case” for the system!
•  Understanding the quality requirements!
•  Designing the architecture!
•  Representing and communicating the architecture!
•  Analyzing or evaluating the architecture!
•  Implementing the system based on the architecture!
•  Ensuring the implementation conforms to the

architecture!

CIS 422/522 Fall 2011! 6!

What is “design?”!

CIS 422/522 Fall 2011! 7!

Meaning of “Design”!

•  What does it mean to say that we are going to
“design the software?”!

•  What is the basis for making a design decision?!
•  How do we know when we are done?!
•  If we did a good job? What makes a good

design?!

CIS 422/522 Fall 2011! 8!

The Design Space!

•  A Design: is (a representation of) a
solution to a problem !
–  Represents a set of choices!

•  Typically very large set of possible
choices!

•  Must navigate through possibilities!
•  Invariably requires tradeoffs!

–  Possible choices are limited by
assumptions and constraints!

•  e.g., must be ISO 2000 compliant,
legacy compatible, etc.!

–  Some designs are better than
others (notion of good design)!

Problem
Space!

Possible
Solutions “Good” 

solutions  
(designs)!

Our 
design!x x x

x x x

Design  
Constrains!

CIS 422/522 Fall 2011! 9!

Design Means…!
•  Design Goals: the purpose of design is to solve

some problem in a context of assumptions and
constraints!
–  Assumptions: what must be true of the design!
–  Constraints: what should not be true!
–  These define the design goals!

•  Process: design proceeds through a sequence of
decisions!
–  A good decision brings us closer to the design goals!
–  An idealized design process systematically makes

good decisions!
–  Any real design process is chaotic!

•  Good Design: by definition a good design is one
that satisfies the design goal!

CIS 422/522 Fall 2011! 10!

Architectural Design Elements!

•  Design goals!
–  What are we trying to accomplish in the

decomposition?!
•  Relevant Structure!

–  How to we capture and communicate design
decisions?!

–  What are the components, relations, interfaces?!
•  Decomposition principles!

–  How do we distinguish good design decisions?!
–  What decomposition (design) principles support the

objectives?!
•  Evaluation criteria!

–  How do I tell a good design from a bad one?!
10

CIS 422/522 Fall 2011! 11!

Examples of Key Architectural
Structures!

•  Module Structure!
–  Decomposition of the system into work

assignments or information hiding modules!
–  Most influential design time structure!

•  Modifiability, work assignments, maintainability,
reusability, understandability, etc.!

•  Uses Structure!
–  Determine which modules may use one anotherʼs

services!
–  Determines subsetability, ease of integration!

CIS 422/522 Fall 2011! 12!

Designing the Module Structure!

CIS 422/522 Fall 2011! 13!

Modularization!

•  For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”!

•  Properties of a “good” module structure!
–  Parts can be designed independently!
–  Parts can be tested independently!
–  Parts can be changed independently!
–  Integration goes smoothly!

CIS 422/522 Fall 2011! 14!

Expected Control Improvements!
•  Reduces complexity, improves manageability!
•  Coding!

–  Can write modules with little knowledge of other modules!
–  Replace modules without reassembling the whole system!

•  Managerial!
–  Allows concurrent development !
–  Avoids “Mythical Man Month” effect (“adding people to a late

software project makes it later”)!
•  Flexibility/Maintainability!

–  Anticipated changes affect only a small number of modules
(usually one)!

–  Can calculate the impact and cost of change!
•  Review/communicate!

–  Can understand or review the system one module at a time!

CIS 422/522 Fall 2011! 15!

Notional Modules!

Problem

Interface

Encapsulated

Interface

Encapsulated Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

CIS 422/522 Fall 2011! 16!

What is a module?!

•  Concept due to David Parnas (conceptual basis for
objects)!

•  A module is characterized by two things:!
–  Its interface: services that the module provides to other parts

of the systems!
–  Its secrets: what the module hides (encapsulates). Design/

implementation decisions that other parts of the system
should not depend on!

•  Modules are abstract, design-time entities !
–  Modules are “black boxes” – specifies the visible properties

but not the implementation!
–  May or may not directly correspond to programming

components like classes/objects!
•  E.g., one module may be implemented by several objects!

CIS 422/522 Fall 2011! 17!

A Simple Module!

•  A simple integer stack!
–  push: push integer on stack top!
–  pop: remove top element!
–  peek: get value of top element!

•  What information is on the
interface?!

•  What are the secrets?!
•  What information is missing?!
•  Why is this an abstraction?!

stack
peek(int)

push(int)

pop()

CIS 422/522 Fall 2011! 18!

A Simple Module!

•  A simple integer stack!
•  The interface specifies what a

programmer needs to know to use
the stack correctly, e.g.!

–  push: push integer on stack top!
–  pop: remove top element!
–  peek: get value of top element!

•  The secrets (encapsulated) any
details that might change from one
implementation to another!

–  Data structures, algorithms!
–  Details of class/object structure!

•  A module spec is abstract:
describes the services provided but
allows many possible
implementations!

•  Note: a real spec needs much more
than this (discuss later)!

stack
peek(int)

push(int)

pop()

CIS 422/522 Fall 2011! 19!

Why these properties?!

Module Implementer!
•  The specification tells me

exactly what capabilities my
module must provide to users!

•  I am free to implement it any
way I want to!

•  I am free to change the
implementation if needed as
long as I donʼt change the
interface!

Module User!
•  The specification tells me how

to use the moduleʼs services
correctly!

•  I do not need to know anything
about the implementation
details to write my code!

•  If the implementation changes,
my code stays the same!

Key idea: the abstract interface specification defines!
a contract between a moduleʼs developer and its users  

that allows each to proceed independently!

CIS 422/522 Fall 2011! 20!

Is a module a class/object?!

•  The programming language concepts of classes and
objects are based on Parnasʼ concept of modules!

•  To separate design-time concerns from coding
issues, however, they are not the same thing!
–  A module must be a work assignment for a team at design

time, it should not determine the run-time structure of the
code!

–  The implementer must be free to implement with a different
class structure as long as the interface capabilities are
provided!

–  The implementer must be free to make changes as long as
the interface does not change!

•  In simple cases, we will often implement each
module as a class/object!

CIS 422/522 Fall 2011! 21!

Module Hierarchy!

•  For large systems, the set of modules need to be
organized such that!
–  We can check that all of the functional requirements

have been allocated to some module of the system!
–  Developers can easily find the module that provides

any given capability!
–  When a change is required, it is easy to determine

which modules must be changed!
•  The module hierarchy defined by the submodule-

of relation provides this architectural view!

CIS 422/522 Fall 2011! 22!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Leaf Modules = !
Work

assignments!

CIS 422/522 Fall 2011! 23!

Decomposition Approach!

CIS 422/522 Fall 2011! 24!

Design Goals!

•  Recast as module structure design goals!
•  Divide software into set of work assignments with the

following properties:!
–  Easy to Understand: Each moduleʼs structure should be

simple enough that it can be understood fully.!
–  Easy to Change (mutability): It should be possible to change

the implementation of one module without knowledge of the
implementation or affecting the behavior of other modules.!

–  Proportion: Effort of making a change should be in
(reasonably) direct proportion to the likelihood of that change
being necessary.!

–  Independence: It should be possible to make a major
change as a set of independent changes to individual
modules!

!

CIS 422/522 Fall 2011! 25!

Modular Structure!
•  Comprises components, relations, and interfaces!
•  Components!

–  Called modules!
–  Leaf modules are work assignments!
–  Non-leaf modules are the union of their submodules!

•  Relations (connectors)!
–  submodule-of => implements-secrets-of!
–  The union of all submodules of a non-terminal module must

implement all of the parent moduleʼs secrets!
–  Constrained to be acyclic tree (hierarchy)!

•  Interfaces (externally visible component behavior)!
–  Defined in terms of access procedures (services or method)!
–  Only external (exported) access to internal state!

CIS 422/522 Fall 2011! 26!

Decomposition Strategies Differ!

•  How do we develop this structure so that we
know the leaf modules make independent work
assignments?!

•  Many ways to decompose hierarchically!
–  Functional: each module is a function!
–  Steps in processing: each module is a step in a chain

of processing!
–  Data: data transforming components!
–  Client/server!
–  Use-case driven development!

•  But, these result in different kinds of
dependencies (strong coupling)!

CIS 422/522 Fall 2011! 27!

Submodule-of Relation!

•  To define the structure, need the relation and the
rule for constructing the relation!

•  Relation: sub-module-of!
•  Rules!

–  If a module consists of parts that can change
independently, then decompose it into submodules!

–  Donʼt stop until each module contains only things likely
to change together!

–  Anything that other modules should not depend on
become secrets of the module (e.g., implementation
details)!

–  If the module has an interface, only things not likely to
change can be part of the interface!

CIS 422/522 Fall 2011! 28!

Applied Information Hiding!

•  The rule we just described is calls the information
hiding principle!

•  Information hiding (or encapsulation): Design
principle of limiting dependencies between
components by hiding information other
components should not depend on!

•  An information hiding decomposition is one
following the design principles that:!
–  System details that are likely to change independently

are encapsulated in different modules !
–  The interface of a module reveals only those aspects

considered unlikely to change!

CIS 422/522 Fall 2011! 29!

Effects of Changes!

•  Consider what happens to
communication among
teams!

•  Suppose we have groups of
requirements R1 – R3:!

–  R1 and R3 are related and
likely to change together!

–  R2 is likely to change
independently!

•  Suppose we put R1 and R2
in the same module and
assign to different teams!

–  What happens when R1
changes?!

–  R2?!
•  Suppose R1 and R3 are put

in the same module?!

R3!
R2!

R1!

R2!
R1! R3!

Interface! Interface!

CIS 422/522 Fall 2011! 30!

Module Hierarchy!
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Given a set of likely
changes C1, C2, … Cn
and following these
rules, what happens:!
•  To each change?!
•  To things that  
 change together?!
•  Change separately?!

CIS 422/522 Fall 2011! 31!

Evaluation Criteria!

•  Evaluation criteria follow from goals of the model: should
be able to answer “yes” to the following review questions?!

•  Completeness!
–  Is every aspect of the system the responsibility of one module?!
–  Do the submodules of each module partition its secrets?!

•  Ease change!
–  Is each likely change hidden by some module?!
–  Are only aspects of the system that are very unlikely to change

embedded in the module structure?!
–  For each leaf module, are the moduleʼs secrets revealed by itʼs

access programs?!
•  Usability!

–  For any given change, can the appropriate module be found
using the module guide!

CIS 422/522 Fall 2011! 32!

Module Decomposition!
•  Approach: divide the system into submodules according to the

kinds of design decisions they encapsulate (secrets)!
–  Design decisions that are closely related (likely to change together ,

high cohesion) are grouped in the same submodule!
–  Design decisions that are weakly related (likely to change

independently) are allocated to different modules!
–  Characterize each module by its secrets (what it hides)!

•  Viewed top down, each module is decomposed into
submodules such that!
–  Each design decision allocated to the parent module is allocated to

exactly one child module!
–  Together the children implement all of the decisions of the parent!

•  Stop decomposing when each module is!
–  Simple enough to be understood fully!
–  Small enough that it makes sense to throw it away rather than re-do!

•  This is called an information-hiding decomposition!

CIS 422/522 Fall 2011! 33!

Specify the Module Interfaces!

•  The leaf modules in the hierarchy represent
units of work!

•  For each leaf module, we specify!
–  Services: the services the module provides that

other modules can use!
–  Secrets: implementation and design decisions the

module must encapsulate!
•  We must also write a detailed interface spec.

(the contract)!

CIS 422/522 Fall 2011! 34!

Example: GRR!

Basic Requirements

The Game Rules Reader (GRR) provides an engine for presenting game
rules (and associated information) to an individual on a computer screen.
Minimally, the GRR should provide the capabilities of a basic hyper-text
document reader such as:

•  Present the current "page" of a hyper-text manual
•  Allow paging, scrolling, and other standard navigation between pages
•  Support hyperlinks from one part of the document to another
•  Support highlighting text
•  Support writing and attaching notes to the text
•  Support minimal customizing of the presentation**

**The basic GRR should support simple customizing of the reading
experience. The person writing the rules (we'll call a "Writer") can indicate
at least two classes of users. The Writer can then designate whether any
given part of the document will or will not appear for the indicated class of
user.

CIS 422/522 Fall 2011! 35!

Questions?!

